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A theoretical analysis is given of the unsteady flow of a liquid within a cylinder 
of finite length started suddenly so as to spin about its axis. It is found that a 
secondary flow, caused by the end walls of the cylindrical container, has a strong 
effect on the generation of spin in the liquid. In  the vicinity of the end walls 
the fluid motion is characterized by a boundary-layer flow, which can be either 
laminar or turbulent. The fluid within the boundary layers rotates faster than 
that at a large distance from the end walls, and therefore is thrown, by centrifugal 
forces, radially outwards. The radial outflow in the boundary layer creates a slow 
secondary motion within the spinning liquid. Due to the secondary flow, the 
transport of angular momentum from the walls to the interior is accomplished 
by convection rather than diffusion. A treatment is given for both laminar and 
turbulent end-wall boundary layers. The theoretical results are compared with 
experimental observations and good agreement is found. 

1. Introduction 
It is well known that spin-stabilized shells can become dynamically unstable 

if they are sled with a liquid. According to a theoretical analysis of Stewartson 
(1959), the stability of a shell containing a cylindrical liquid-filled cavity can be 
predicted if the liquid is in rigid-body rotation. 

However, for a liquid of small viscosity, a relatively long time is required for 
the liquid to reach full spin, and, during the transition period, the shell might 
become dynamically unstable even though it might be stable at its final state 
if the liquid attained rigid-body rotation. In  the course of experimental investi- 
gations (Karpov 1962), severe dynamic instabilities of liquid-filled spinning 
shells have been observed in cases where the shell should have been stable 
according to Stewartson’s theory and the assumption of rigid rotation of the 
liquid filler. In  order to extend the prediction of instabilities in such cases, it 
appeared desirable to analyse the problem of unsteady fluid motion within a 
cylinder, suddenly started spinning about its axis. 

If the cylinder is infinitely long, a solution to the problem is obtained without 
difficulty, but the expectation that this solution might be approximately valid 
for slender but h i t e  cylinders proves to be wrong. It is found that the effect of 
the cylinder ends on the fluid motion is not only not negligible, but dominating. 
The fluid motion is entirely changed by the presence of a secondary flow induced 
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by the cylinder ends. The secondary flow convects spinning fluid from the walls 
into the interior of the cylinder and, as a consequence, the fluid attains rotational 
motion many times faster than without secondary flow. In  the following, a 
theoretical analysis ?s given of the unsteady flow within a cylinder which is 
started spinning about its axis of rotation. The results are then compared with 
some experimental data obtained: (1) from spin decay data of liquid-filled 
shells; and (2) from direct observations of the secondary flow within a spinning 
transparent cylinder. 

2. Theoretical analysis of the flow 
2.1. Structure of the secondaryflow 

The diagram in figure 1 shows an axial section and a cross-section of the spinning 
cylinder. The height of the cylinder is h, the radius a. In  the following analysis, 
we use a polar co-ordinate system 8, r,  z with the origin in the centre as shown in 

FIGURE 1. Axial section and cross-section of spinning cylinder. 

figure 1. The velocity components are v, u, w, respectively. The Navier-Stokes 
equations in these co-ordinates for a flow having rotational symmetry are 

av av v av a=v a v 
at (a, r )  az [arz ar(i )+$]’  -+u -+- + w - = u  -+- 

a(ru) a(rw) -+- = 0. 
ar az 

The boundary conditions are u = w = 0, v = wr at z = 5 Qh, and u = w = 0, 
v = aw at r = a, with u, v = 0 at r = 0. 
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Let us assume that at time t = 0 the cylinder is started spinning about its axis 
of rotation with the constant or time-dependent angular velocity w. 

If the cylinder is infinitely long, i.e. h-+ co, the equations (1 b) ,  (1 c )  and (1 d )  
with the corresponding boundary conditions can be satisfied by 

and equation (1 a )  reduces to a linear differential equation, 

where v depends on r and t only. No such solution with u = w = 0 is possible if 
the cylinder has a finite length. In  the vicinity of the end walls, z = +A, the 
circumferential component v must depend on z and, according to equations (1 b )  
and (1 c), the velocity components u, w must be different from zero. I n  fact, the 
fluid particles at the cylinder ends rotate with the velocity of the walls and 
are therefore subject to centrifugal forces. Because of these centrifugal forces, 
the particles close to the end walls are driven outwards, creating a secondary 
flow with velocity components u, w. We can assume, however, with the reserva- 
tion of a final proof, that the secondary motion u, w is very slow except in a thin 
boundary-layer region at each of the end walls. Thus, we can divide the entire 
flow region in two parts, the boundary-layer region close to the end walls and 
the rest of the flow, which we will call the core flow. A similar flow structure was 
found by Ludwieg (1951) for the steady flow in a rotating duct, and the following 
considerations will be analogous to those given by Ludwieg (1951). 

2.2. Approximate equation for the core $ow 
Let us use the notation vo, uo, wo, po  for the velocity components and the pres- 
sure in the core flow. If we apply equation (1 b )  to the core flow, we can neglect 
the terms containing u, w, according to our assumption that the secondary 
motion is very slow in the core flow, and we have approximately 

From equation (1 c) we observe that the axial pressure gradient apo/az is very 
small; or, within our approximation, we can assume that the pressure is inde- 
pendent of x .  But then, according to equation (3), vo must be independent of z, 
and equation (1 a)  applied to the core flow gives 

Since vois independent of z, it can be seen from (4) that uo must also be independent 
of z. Thus (4) reduces to a partial differential equation in the independent 
variables r and t .  

Before we can solve (4) for the circumferential component v,,, we must have an 
additional relation which allows us to express the other dependent variable 

25 Fluid Meoh. 20 
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uo in terms of v,+ The required additional relation between uo and vo will be given 
by the coupling between boundary-layer flow and core flow. 

2.3. Boundary-layer $ow 
Since the flow within the spinning cylinder must be symmetric with respect to 
the middle plane z = 0, we can restrict our analysis to the boundary layer 
at one of the end walls, say z = - i h .  

The boundary-layer equations can be obtained from the Navier-Stokes 
equations (1 a)  to (1 d ) ,  applying the usual boundary-layer simplifications. The 
radial pressure gradient within the boundary layer can be replaced by the pres- 
sure gradient of the ‘outer’ flow, i.e. the core flow in our case. Thus, according to 

The friction forces reduce to v(a2v/az2), etc. Although the boundary-layer flow 
is unsteady, we can treat it as a quasi-steady flaw, i.e. the local acceleration terms 
av/at, etc., can be neglected. Apart from a very short acceleration period, after 
the cylinder starts to spin, the local acceleration terms are very small compared 
to the convective terms. During the acceleration period, the flow at each of the 
endwalls is essentially the same as the flow on an impulsively started rotating disk. 
The unsteady boundary-layer flow on an impulsively started rotating disk 
was investigated by Thiriot (1940). According to Thiriot’s solution, the duration 
of the acceleration period is w 2 / w ,  i.e. after a fraction n-l of a revolution the 
boundary-layer flow is almost steady. We can, therefore, ignore the acceleration 
period and consider the boundary-layer flow as quasi-steady for all time. The 
boundary-layer equations are then 

For convenience we change our co-ordinate system, so that the lower end wall 
of the cylinder is given by z = 0. The boundary conditions, then, are 

v = r w ,  u=O, w = O  at z = O ;  

v = vO(r,t) ,  u = 0 at z = 00. 

vo enters into our boundary-layer problem twice; first, it  occurs in equation 
(5a) ,  and secondly, it  enters into one of the boundary conditions. For any 
given outer flow vo(r), the boundary-layer flow is determined by the equations 
(5a, b , c )  and the boundary conditions (5d). Thus, we,have a coupling between 
the boundary-layer flow and the core flow. 

The boundary-layer equations (5a, b, c )  have been the subject of many 
investigations. von K&rm&n (1921) considered the flow on a rotating disk in a 
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fluid at rest (wo = 0 )  and obtained approximate solutions using the integral 
method he invented. A more accurate solution to the same problem was calcu- 
lated by Cochran (1934). The problem of rigid-body fluid rotation over a station- 
ary disk was solved by Bodewadt (1940). 

Batchelor (1951), Stewartson (1958), Rogers & Lance (1960) and others 
investigated the more general problem of a fluid in rigid-body rotation over a 
rotating disk. A common feature of the above-mentioned flows is that they have 
similarity solutions, where the velocity components take the form v = rC(z), 
u = rF(z), w = H(z).  These similarity solutions are also solutions of the exact 
Navier-Stokes equations, since the terms, which are commonly neglected in 
boundary-layer theory, vanish identically. Ludwieg (1951) and Squire (1953) 
linearized the boundary-layer equations (5a, b, c) for the case of small distur- 
bances about a state of rigid rotation. In  the linearized form, the equations 
(5a, b, c )  reduce to a set of ordinary differential equations, which are linear. 

For general wo-distributions, when neither linearization nor the assumption 
of similarity flow is applicable, approximate solutions may be obtained by using 
the momentum-integral methods. Mack (1962,1963) has applied the momentum- 
integral method (1962) and a simplified momentum-integral method (1963) 
to rotating flows on a stationary disk. The latter method, which makes computa- 
tions easy, could be extended to our case of rotating flows on a rotating disk. 
While the momentum-integral method does not give the exact shape of the 
velocity profiles, it provides fairly good approximations to certain integral 
values, e.g. the radial mass-flow within the boundary layer, which is 

M ( r )  = 2 m  p u(r, z )  dz, 1: 
where 6 is the boundary-layer thickness. When the radial mass-flow distribution 
M ( r )  has been determined-for a given distribution of wo(r)-the radial velocity 
in the core flow, uo(r), can be found. 

Making use of the condition that the total radial mass-flow (within the two 
boundary layers and the core flow) must be zero, one obtains 

2nr p k j : u ( r ,  z )  dz + huo(r) = 0, I 
- or 

Thus, we have a functional dependence 

This means that for any given distribution of vo(r) we can find the distribution 
of uo(r). In  principle we could now express u,, in equation (4) in 3erms of wo 
making use of the functional dependence (7). But aside from the fact that we 
cannot give an explicit formula for uo(r), the relation (7) will be much too com- 
plex to enable us to solve (4). Thus we have to confine ourselves to a simple 
approximation for the relation (7). 

26-2 
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2.4. Approximate formula for u,(r) 

At the beginning of the fluid motion the circumferential component of the core 
flow, v,, is zero and the boundary-layer problem reduces to the problem of the 
rotating disk flow, which was solved by Cochran (1934). According to Cochran’s 
solution we have 

and hence, from equation (6), 

- ihu, = 0.443 (v /w)*rw.  (9) 

If on the other hand the fluid finally attains the state of rigid rotation (v, = r w )  
the boundary-layer equations (5) have the trivial solution v = rw, u = w = 0 
and hence uo = 0. 

The simplest possible approximation for general vo distributions then is to 

(10) 
assume that 

- ihu, = 0.443 (v/w)* (rw-v,),  

which is a linear interpolation between the two extreme cases. We can test the 
validity of this approximation in a few other cases. If the core flow is almost 
a rigid-body rotation with the angular velocity w ,  i.e. vo = rw + v; and v; g rw, 
the boundary-layer equations (5a, b, c) can be linearized. In  doing this we trans- 

(11) 
form vo = rw+v;, u = u’, v = rwi -v ’ ,  w = w‘, 

where the primed quantities are small compared with ro. Substituting (11) 
into (5 a, b )  and neglecting terms of higher than first order in the primed quantities, 
equations (5a, b )  become 

v(PV’pz2) - 2wu‘ = 0, V(82U’/822) + 2w(v’ - VJ = 0. (12) 

These linearized equations were used by Ludwieg (1951) for the boundary-layer 
flow in a rotating duct. With the boundary conditions 

v‘ = 0,  u’ = 0, at z = 0;  v‘ = vi, u‘ = 0,  at z = a, 

equations (12) are satisfied by 

v’ = .:[I- cos {(o/v)* z }  exp { - (w/v)* z}],  

For the radial component in the core flow u, we have, according to (6), 

u‘ = - v; sin {(w/v)* z }  exp { - (o/v)* z}. 

(13) 

- +hu,(r) = U’aZ = - +u; (v /w) * .  l o *  
If we replace v; according to (1 1) by - (rw - v,), we have 

- @uo = 0*5OO(v/w)* (rw - v,). (14) 

This formula for u, is similar to the linear interpolation formula (10) except that 
the factor of 0.500 in (14) is 13 % larger than the factor 0.443 in (lo), so that the 
error in the approximate formula (10) in this case is 13 %. For the case when the 
outer flow is a rigid rotation with the angular velocity IR, i.e. vo = rIR, the bound- 
ary-layer equations (5) have been solved by Rogers & Lance (1960) for several 
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values of Q/w. According to the solution of Rogers & Lance, the radial flow 
integral is given by 

- i h u o  = som u d z  = ( v / w ) i r w f ( Q / w ) ,  (15) 

where the function f( O/w) is shown in figure 2. If we apply our approximation 
formula (10) to the case when vo = rO, we get 

0.5 

- i h u ,  = 0-443(v/w)* rw (1 - Q / w ) .  (16) 

- 

FIUURE 2. Radial flow integral as a function of n/o. - , Rogers & Lance (exact); 
-- -, linear interpolation, [0*443( 1 - C ~ / O ) ] .  

Thus the function f( Q/w)  has to be compared with the approximate expression 
0.443 (1 - O / w ) ,  which is shown by the dotted line in figure 2.  The agreement 
is good enough for us to consider equation (10) a reasonable approximation in 
this case also. Whether or not equation (10) is approximately valid for the actual 
velocity profiles vo(r, t )  can be checked after obtaining the solution for wo(r, t ) .  
A calculation of the radial flow integral for some of the obtained velocity profiles 
v0(y, t )  has been done, based on the simplified momentum-integral method of 
Mack (1963).  The uo values obtained from these calculations have been com- 
pared with the approximate values from equation (10) and the agreement found 
to be good within the accuracy of the momentum-integral method, which is 
about 15 yo. Thus, we can conclude that the error of the approximation (10) for 
uo is probably not larger than 15 %. 

Using the notation Re = a"/v for the Reynolds number, equation (10) can 
be written as 

(17) uo = - 0*443(2a/h) Re-* (TO - vo) 
or, with the notation k = 0.443 (2a/h)Re-*, 
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2.5. Solution for vo(r, t )  
After substituting (19) into.(4) the equation for vo is 

where k = 0.443 (2alh) Re-4. The initial and boundary conditions are 
vo = 0 for t < 0, vo = aw for r = a and t > 0. 

Let us restrict our analysis at this point to the case of constant w (i.e. the 
cylinder is started spinning with constant angular velocity w at t = 0). In  many 
cases, we can neglect the friction terms on the right-hand side of equation (20) 
as compared with the convection terms. To see this we multiply equation (20) 
by l/aw2 and, introducing the dimensionless variables v* = vo/aw, r* = ria 
equation (20) becomes 

with the boundary conditions 
v* = 1 for r* = 1 and wt 2 0. 

It can be seen from equation ( 2 1 )  that the solution v* is a function of hot, r* 
and the dimensionless parameter kRe = 0-443 (2alh) Re), i.e. 

v* = f ( r * ,  kot,  kRe). 

If kRe = 0.443 2aRe)lh 9 1, then the viscous terms a t  the right-hand side of 
(21) become small except for small times when the gradient av*/ar* is large near 
the wall r* = 1. For not too small times and kBe 1 we can therefore neglect the 
viscous terms and the solution of the inviscid equation is 

(22) for r* < e-kwt. ’1 v* = (r*ezkwt-- I/r*)/(e”Wt- 1) for r* > e-kwt 

v* = 0 

A plot of the v*-profiles (equation (22)) for different times is shown in figure 3. 

1 -0 

rJa 

FIGURE 3. Velocity profiles for the core flow. 
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It is remarkable that the solution (22) also satisfies the complete equation (21) 
with viscous terms except at the point r* = e-kwt where the first derivative is 
discontinuous. The inviscid equation is of the fist order in the derivatives and 
hence only the solution function has to be continuous, while the complete equa- 
tion has second-order derivatives and the solution must have continuous 
derivatives. The effect of the viscosity, therefore, will be to smooth the corner 
at r* = e-kwt. With the solution (22) for vo the other flow components uo, wo can 
be obtained at once. First of all we have, from (19) 

uo = -k(rw-vo) ,  

From the equation of continuity (1 d )  and the condition that the flow must be 
symmetric about the plane z = 0,  it follows that 

Within the core flow we can distinguish two regions. 

Region 1: 0 < r/a < e-kwt; 

Region 2: e-kw6 < r/a < 1. 

According to equation (22) the particles in region 1 do not rotate (i.e. vo = 0) 
while the particles in region 2 rotate with the velocity vo = awv* given by equation 
(22). Regions 1 and 2 are separated by the cylindrical front r/a = e-k*, which 
moves towards the axis r = 0. 

It can be shown that the particles in region 1, i.e. the particles ahead of the 
moving front, remain ahead of it until they hit one of the boundary layers a t  the 
end walls z = & ih.  To see this, we compute the trajectories of the particles in 
region 1. From vo = 0 it follows that uo = - krw and wo = 2kzw (equation (23)). 
From drldt = uo = -krw, dzldt = wo = 2kzw, 

we obtain by integration 

where (ro,zo) is the particle position at t = 0. The trajectories (25) are entirely 
in region 1, so that the solution (25) is compatible with the supposition vo = 0. 

Thus we obtain the following flow picture: after the cylinder is started at 
t = 0, the fluid particles move along hyperbolas given by (25) until they hit the 
boundary layer a t  one of the end walls z = & 3h; in the boundary layer the 
flow direction changes rapidly, the particles acquire rotational motion and are 
thrown radially outwards until they emerge from the boundary layer at some 
distance behind the moving front r/a = e-kd, now having a rotational component 
vo according to equation (22). The rest of the trajectories are entirely in region 2. 

Actually, this flow picture will be modified slightly. The particles can acquire 
rotational motion in region 1 by the action of the viscous force term in equation 
(21) which has been neglected so far. This will also slightly modify the trajectories 
given by equation (25). 
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2.6. Equations for the angular momentum 
Of particular interest is the total angular momentum of the liquid within the 
cylinder, which is 

I = ph.  2 m I r  r2v0dr. (26) 

An equation for the angular momentum I can be obtained from equation (20). 
To this end, we multiply equation (20) by r2 and integrate from r = 0 to r = a. 
If we consider that 

this gives 

The second integral consists of two terms: the first one gives 

k rvo a(rv,)dr = [ik ( r ~ ~ ) ~ ] $ ,  SR ar 

while the second term can be integrated by parts to give 

Considering that wo = a o  for r = a, the second integral of equation (27) gives 

k/ (rvo - r2w) dr = - ika4w2 + 2kw 
ar 

The integral at the right side of equation (27) becomes, after integration by parts, 

We thus get the equation 

According to (26) the value of the angular momentum is 

I = 27rhp r%,dr. 
I O U  

I n  the final state, i.e. when the liquid approaches rigid-body rotation vo = rw, 
the angular momentum becomes 

Im = 2mhp r3wdr = 2mhp(a4w/4). 
I O U  

The ratio of the angular momentum 1 to its final value I, is then 
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After dividing equation (28) by &4w, it  can be written 

If we again neglect the viscous term at the right side of equation (30), the equa- 
tion can be integrated at once to give 

I /& = (1 - e-2kwt). (31) 

This result, of course, could also have been obtained by integration from the 
solution (22) for the velocity profiles v* = v,/aw. 

In  order to improve the solution (31) we have to take into account the friction 
term 

of equation (30). This can be done within a fairly good approximation by assum- 
ing the approximate shape of the velocity profiles uo(r) and expressing 

[a(v,/r)/ar],,, in terms of I/I,. 

Since the contribution of the viscous term is small, it appears reasonable to 
assume that the v,-profiles will have essentially the same shape as the profiles 
that we have obtained as solutions of the inviscid equation. Thus, we may 
assume profiles of the form 

v,/ao = (A2r/a-a/r) / (A2-  1) for r/a > A-l, 

vo/ao = 0 for r/a < A-l, (32) } 
where A is a function of time. For the case where the viscous term is wholly 
neglected, the solution for vo/aw was given, according to equation (22), by the 
profiles (32) with A = ekwt. 

It might be mentioned that the vo profiles (32) satisfy the compatability 
condition 

which is obtained by evaluating equation (20) at r = a. Using the u, profiles 

while III, = 1 - A-2. (35) 

Thus, from (34) and (35) we obtain 

Inserting (36) into (30) we have 

2( . )+2kw[t - l ]  dt I, = $ k - l ] ,  

or, after dividing by w ,  
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It should be mentioned that the approximation for [a(v,/r)/ar],,, given by 
equation (36)  is not very sensitive to the special choice of velocity profiles. 
Although the very early v,-profiles are somewhat different from those given in 
equation (32 ) ,  the expression (36 )  is still a good approximation. 

It can be shown from equation (37) that for sufficiently small times the 
friction term is dominant however large kRe is. The equation for vo is then 

av,/at = v(a2vo/ar2), (38 )  

which is obtained from equation (20 )  by neglecting the convection terms and 
va(v,/r)/ar compared with v(a2v,/ar2). The solution of (38)  is 

With the velocity profiles given by equation (39) one would have 

while equation (36 )  gives approximately 

since for small times Im/I 9 1. Thus, we see that equation (36 )  is a reasonably good 
approximation even for the very early velocity profiles. 

The differential equation (37) now has to be solved for the initial condition 
I/I, = 0 at t = 0. The solution for I/I, can be given implicitly 

4 
kRe 

2kwt = 
1 + 4/kRe 

For TcRe -+ co the solution (40)  reduces to 1 -I/.l ,  = e-2kot, i.e. the inviscid solu- 
tion given by (31). For very small times, or more precisely for I / &  4 1 and 
&kReI/Ia < 1, equation (40 )  gives I/& x 4(wt/Re)*, i.e. the angular momentum 
increases as the square root oft. 

The validity of the preceding results is restricted to the case where the angular 
velocity of the cylinder, w ,  remains constant after the cylinder is started. If 
w is not constant, it  is advantageous to introduce the dimensionless quantity 

where wo is a constant reference angular velocity and I, is a reference angular 
momentum, 

I, = ~ ? r p h / r  w0r3dr, 

the latter corresponding to a rigid rotation with angular velocity 0,. Dividing 
equation (28 )  by $ a 4 4  and substituting {8(vo/r)/8r]r=a according to equation (36 )  

dI* we have 
dw, t 

where Re, = a2wo/v and k, = 0.443 (2alh) (Re,)-*. 



The unsteady within a spinning cylinder 395 

Equation (42) has been used to calculate the spin decay of a liquid-filled shell. 
If a shell containing a liquid-filled cylindrical cavity is started impulsively to 
spin about its axis of rotation, the liquid continuously absorbs angular momen- 
tum, thus reducing the spin until the liquid finally attains rigid-body rotation. 
Let A be the axial moment of inertia of the empty shell, w the instantaneous 
angular velocity and I the angular momentum of the liquid; then, from conserva- 
tion of angular momentum, 

where wo is the initial angular velocity when the liquid is a t  rest. According to 
(43) we can express I by o 

or using the definition (41), 

After inserting (44) into (42) we get a differential equation for I* (or w/wo)  which 
may be solved by numerical integration. 

I + w A  = const. = uOA, 

I = Awo(l - w/wo),  

I" = (Aoo/Io) (1 - o/uo). 

(43) 

(44) 

2.7. Turbulent boundary-layer$ow 
In  $92.3 and 2.4 we have assumed that the boundary-layer flow at the cylinder 
ends is laminar. This assumption is valid for Reynolds numbers Re = a%/v 
up to about 3 x lo5 (see e.g. Schlichting 1958). For Reynolds numbers greater 
than 3 x lo5 the boundary-layer flow will be turbulent and the radial mass flow 
and hence uo will be different from the laminar case. According to the solution 
of von KBrm&n (1921) for the turbulent boundary-layer flow on a rotating disk, 
the radial flow integral is jo udz = 0.035 rg (v/w)* ro. 

Iom udz = 0-035a(Re)-i (ro)g/(au)g. 

IOm udz = 0*035a(R- e)-i (ro - vo)!/(aw)Q. 

(45) 

This formula is analogous to equation (8), which corresponds to the laminar 
case. 

Using again the notation Re = a20/v for the Reynolds number, equation (45) 
can be written as 

(46) 

By arguments similar to those used in $2.4 for the laminar boundary layer, it  
seems appropriate to generalize equation (46 )  to 

(47) 

According to equation (6) we then have for the radial component of the core 
flow: uo(r) = - 0-035(2a/h) (Re)-* ( r o  - vo)%/(aw)Q. 

Equation (48) is analogous to equation (17). With uo obtained from equation 
(48)  equation (4) for the core flow becomes 

(48) 

where Tc, = 0.035(2a/h) (Re)-*. (50)  
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Analogous to the procedure described in $2.6, we find the equation for the angu- 
lar momentum by multiplying equation (49) by 4r2/a4wi and integrating over r .  
If we further introduce the dimensionless quantity I* according to equation (41)  
we finally have 

The integral in equation (51) cannot be evaluated as it could for the laminar 
case, without knowing how v, depends on r .  Only for small times when the vo 
profiles are restricted to  a narrow zone near the wall r = a, can we approximate 
r in the integral by a and obtain 

Inserting the last result into (51) and using, for the viscous term on the right side, 
the same approximation as in equation (42), we obtain 

where again (Re) ,  = aZwo/v and itto = 0-035 (2alh) (Re,)-&. I n  order to evaluate 
the integral in equation (51) for later times, when the assumption r "N a is no 
longer valid, we have to make assumptions about the shape of the velocity pro- 
files vo(r). We may assume that the velocity profiles are again given roughly by 
equation (32). These profiles, at least, satisfy the compatibility condition (33), 
i.e. they are correct near the wall. 

Using the 2ro profiles given by (32) the integral in equation (51) can be evaluated 
and expressed by I*. After some lengthy calculation, one finally obtains from 
equation (51) 

1 dI* 
* (I*w,/w)Y 

For small times, i.e. as long as I*w,/w < 1, the integral approximates to 

while ( 1  - I*wo/w)Q M 1, and equation (53)reduces to equation(52). Equation (53) 
has been used to calculate the spin decay of a liquid-filled shell for Re, > 3 x lo6. 

3. Comparison with experiments 
In  order to test the analysis given in the preceding section, some of the 

theoretical predictions have been compared with existing experimental data. 
A detailed description of the experimental arrangements is given by Karpov 
(1962). A quantity which has been measured directly is the axial spin decay of 
liquid-filled shells fired from a gun. After the shell leaves the gun, the angular 
velocity decreases continuously. The decrease of angular velocity is caused by 
absorption of angular momentum in the liquid and by the torque due to air 
friction. The contribution of the air friction, which is usualIy small, can be 
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determined separately by observation of the spin decrease of the empty shell. 
The difference, which is due to absorption of angular momentum, has been 
plotted for two typical cases in figures 4 and 5. For comparison, the theoretical 
curves are plotted in the same diagram and also the curves obtained from the 
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FIGURE 4.  Spin decay for laminar boundary-layer flow. Re = 1.76 x lo5, 
h/2a = 2.68. 
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theory without secondary flow. The fineness ratio of the cylindrical cavity was 
in both cases h/2a = 2.68. For fineness ratios smaller than 2.68 the effect of the 
secondary flow would be even more pronounced. 

The Reynolds number for the case plotted in figure 4 was Re = 1.76 x lo5 so 
that a laminar boundary-layer flow could be assumed, while for the case of 
figure 5 the Reynolds number of Re = 6.1 x lo6 was above critical and therefore 
the formula for turbulent boundary-layer flow was applied. 

In  addition to observations of spin decay, experiments have been done to 
observe the secondary flow itself. To this end an impulsive spin generator was 
designed which is described by Stoller (1960). The spin generator consisted of a 
liquid-filled cylinder with transparent walls which could be started impulsively 
to spin about its axis. A suspension of small particles was dissolved in the liquid, 
the specific gravity of the particles being the same as that of the liquid. The 
trajectories of the particles could be observed with the aid of a motion camera. 
For this type of observation, of course, only transparent liquids could be used. 

+Theory I *Experiment 

0 1 *o 
rla 

FIGURE 6. Particle trajectories and position of particles at 0.28 sec intervals. 

Figure 6 shows some of the observed particle trajectories, or rather the first 
part of them, and the particle positions at constant time intervals. Close to the 
observed trajectories, theoretical trajectories and particle positions according 
to equation (25) are plotted. The agreement is reasonably good. Some deviations 
can be explained by the fact that the Reynolds number of the experimental 
flow was rather low (Re = 1-83 x lo4) while the theoretical prediction is based on 
the assumption of high Reynolds numbers, where the viscous forces in the core 
flow can be neglected. 

The author is grateful to Dr F. D. Bennett and Dr R. Sedney for advice and 
helpful discussions, and to Dr B. G. Karpov, who made the experimental data 
accessible. 



The unsteady flow within a spinning cylinder 399 

REFERENCES 
BATCHELOR, G. K. 1951 Quart. J. Mech. Appl. Math. 4, 29. 
BODEWADT, U. T. 1940 2. angew. Math. Mech. 20, 241. 
COCHRAN, W. G. 1934 Proc. Camb. Phil. SOC. 30, 365. 
KARPOV, B. G. 1962 Ballistic Research Laboratories Rep. no. 1171. 
LUDWIEU, H. 1951 Ingenieur-Archiw, 19, 296. 
MACK, L. M. 1962 Jet Prop. Lab. Tech. Rep. 32-224. 
MACK, L. M. 1963 Jet Prop. Lab. Tech. Rep. 32-366. 
ROGERS, M. H. & LANCE, G. N. 1960 J .  Fluid Mech. 7, 617. 
SCHLICHTINU, H. 1958 Genzschicht-Theorie, Karlsruhe : Verlag G. Braun. 
SQUIRE, H. B. 1953 Aero. Rm. Counc., Lond., 16,021. 
STEWARTSON, K. 1958 Boundmy Layer Resewch Symposium, Freiburg, pp. 89-71. Berlin: 

STEWARTSON, K. 1959 J .  Fluid Mech. 5, 
STOLLER, H .  M. 1960 Ballistic Research Laboratories Tech. Note 1355. 
THIRIOT, K. H. 1940 2. angew. Math. Mech. 20, 1. 
v. KARMAN, T. 1921 2. angew. Math. Mech. 1, 233. 

Springer Verlag. 




